Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 290: 121830, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302306

RESUMEN

The brain is protected against invading organisms and other unwanted substances by tightly regulated barriers. However, these central nervous system (CNS) barriers impede the delivery of drugs into the brain via the blood circulation and are therefore considered major hurdles in the treatment of neurological disorders. Consequently, there is a high need for efficient delivery systems that are able to cross these strict barriers. While most research focuses on the blood-brain barrier (BBB), the design of drug delivery platforms that are able to cross the blood-cerebrospinal fluid (CSF) barrier, formed by a single layer of choroid plexus epithelial cells, remains a largely unexplored domain. The discovery that extracellular vesicles (EVs) make up a natural mechanism for information transfer between cells and across cell layers, has stimulated interest in their potential use as drug delivery platform. Here, we report that choroid plexus epithelial cell-derived EVs exhibit the capacity to home to the brain after peripheral administration. Moreover, these vesicles are able to functionally deliver cargo into the brain. Our findings underline the therapeutic potential of choroid plexus-derived EVs as a brain drug delivery vehicle via targeting of the blood-CSF interface.


Asunto(s)
Plexo Coroideo , Vesículas Extracelulares , Encéfalo , Barrera Hematoencefálica/fisiología , Sistema Nervioso Central
2.
Oncotarget ; 13: 785-799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677533

RESUMEN

Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130 F/F mouse model of GC. Expression of IL-33 (and it's cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130 F/F /Il33 -/- mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.


Asunto(s)
Interleucina-33 , Neoplasias Gástricas , Animales , Receptor gp130 de Citocinas , Citocinas , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/metabolismo , Ratones , Ratones Noqueados , Células Mieloides/metabolismo , Transducción de Señal , Neoplasias Gástricas/patología
3.
Clin Sci (Lond) ; 135(15): 1859-1871, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34296277

RESUMEN

BACKGROUND AND AIMS: Preterm birth is associated with increased risk of cardiovascular disease (CVD). This may reflect a legacy of inflammatory exposures such as chorioamnionitis which complicate pregnancies delivering preterm, or recurrent early-life infections, which are common in preterm infants. We previously reported that experimental chorioamnionitis followed by postnatal inflammation has additive and deleterious effects on atherosclerosis in ApoE-/- mice. Here, we aimed to investigate whether innate immune training is a contributory inflammatory mechanism in this murine model of atherosclerosis. METHODS: Bone marrow-derived macrophages and peritoneal macrophages were isolated from 13-week-old ApoE-/- mice, previously exposed to prenatal intra-amniotic (experimental choriomanionitis) and/or repeated postnatal (peritoneal) lipopolysaccharide (LPS). Innate immune responses were assessed by cytokine responses following ex vivo stimulation with toll-like receptor (TLR) agonists (LPS, Pam3Cys) and RPMI for 24-h. Bone marrow progenitor populations were studied using flow cytometric analysis. RESULTS: Following postnatal LPS exposure, bone marrow-derived macrophages and peritoneal macrophages produced more pro-inflammatory cytokines following TLR stimulation than those from saline-treated controls, characteristic of a trained phenotype. Cytokine production ex vivo correlated with atherosclerosis severity in vivo. Prenatal LPS did not affect cytokine production capacity. Combined prenatal and postnatal LPS exposure was associated with a reduction in populations of myeloid progenitor cells in the bone marrow. CONCLUSIONS: Postnatal inflammation results in a trained phenotype in atherosclerosis-prone mice that is not enhanced by prenatal inflammation. If analogous mechanisms occur in humans, then there may be novel early life opportunities to reduce CVD risk in infants with early life infections.


Asunto(s)
Aterosclerosis/inmunología , Corioamnionitis/inmunología , Inmunidad Innata , Macrófagos Peritoneales/inmunología , Células Progenitoras Mieloides/inmunología , Peritonitis/inmunología , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Cultivadas , Corioamnionitis/inducido químicamente , Corioamnionitis/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Macrófagos Peritoneales/metabolismo , Ratones Noqueados para ApoE , Células Progenitoras Mieloides/metabolismo , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Fenotipo , Embarazo
4.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G175-G188, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32538140

RESUMEN

Gastrokines (GKNs) are anti-inflammatory proteins secreted by gastric epithelial (surface mucous and pit) cells, with their aberrant loss of expression causally linked to premalignant inflammation and gastric cancer (GC). Transcriptional mechanisms accounting for GKN expression loss have not been elucidated. Using human clinical cohorts, mouse transgenics, bioinformatics, and transfection/reporter assays, we report a novel mechanism of GKN gene transcriptional regulation and its impairment in GC. GKN1/GKN2 loss is highly coordinated, with both genes showing parallel downregulation during human and mouse GC development, suggesting joint transcriptional control. In BAC transgenic studies, we defined a 152-kb genomic region surrounding the human GKN1/GKN2 genes sufficient to direct their tissue- and lineage-restricted expression. A screen of the 152-kb region for candidate regulatory elements identified a DNase I hypersensitive site (CR2) located 4 kb upstream of the GKN1 gene. CR2 showed overlapping enrichment of enhancer-related histone marks (H3K27Ac), a consensus binding site (GRE) for the glucocorticoid receptor (GR), strong GR occupancy in ChIP-seq data sets and, critically, exhibited dexamethasone-sensitive enhancer activity in reporter assays. Strikingly, GR showed progressive expression loss, paralleling that of GKN1/2, in human and mouse GC, suggesting desensitized glucocorticoid signaling as a mechanism underlying GKN loss. Finally, mouse adrenalectomy studies revealed a critical role for endogenous glucocorticoids in sustaining correct expression (and anti-inflammatory restraint) of GKNs in vivo. Together, these data link the coordinate expression of GKNs to a glucocorticoid-responsive and likely shared transcriptional enhancer mechanism, with its compromised activation contributing to dual GKN loss during GC progression.NEW & NOTEWORTHY Gastrokine 2 (GKN2) is an anti-inflammatory protein produced by the gastric epithelium. GKN2 expression is progressively lost during gastric cancer (GC), which is believed to play a casual role in GC development. Here, we use bacterial artificial chromosome transgenic studies to identify a glucocorticoid-responsive enhancer element that likely governs expression of GKN1/GKN2, which, via parallel expression loss of the anti-inflammatory glucocorticoid receptor, reveals a novel mechanism to explain the loss of GKN2 during GC pathogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucocorticoides/farmacología , Hormonas Peptídicas/metabolismo , Neoplasias Gástricas/metabolismo , Células A549 , Animales , Proteínas Portadoras/genética , Cromosomas Artificiales Bacterianos , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Familia de Multigenes , Hormonas Peptídicas/genética
5.
Clin Sci (Lond) ; 133(10): 1185-1196, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31088858

RESUMEN

Atherosclerosis is a chronic inflammatory disease that has its origins in early life. Postnatal inflammation exacerbates atherosclerosis, but the possible effect of intrauterine inflammation is largely unexplored. Exposure to inflammation in utero is common, especially in infants born preterm, who have increased cardiovascular risk in adulthood. We hypothesised that exposure to inflammation before birth would accelerate the development of atherosclerosis, with the most severe atherosclerosis following exposure to both pre- and postnatal inflammation. Here we studied the effect of prenatal and postnatal inflammation on the development of atherosclerosis by combining established techniques for modelling histological chorioamnionitis and atherosclerosis using apolipoprotein E (ApoE) knockout mice. A single intra-amniotic (IA) injection of lipopolysaccharide (LPS) caused intrauterine inflammation, and increased atherosclerosis at 13 weeks of postnatal age. In mice exposed to postnatal LPS, chorioamnionitis modulated subsequent responses; atherosclerotic lesion size, number and severity were greatest for mice exposed to both intrauterine and postnatal inflammation, with a concomitant decrease in collagen content and increased inflammation of the atherosclerotic plaque. In conclusion, pre- and postnatal inflammation have additive and deleterious effects on the development of atherosclerosis in ApoE knockout mice. The findings are particularly relevant to preterm human infants, whose gestations are frequently complicated by chorioamnionitis and who are particularly susceptible to repeated postnatal infections. Human and mechanistic studies are warranted to guide preventative strategies.


Asunto(s)
Aterosclerosis/etiología , Corioamnionitis , Inflamación/complicaciones , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Masculino , Ratones Noqueados para ApoE , Embarazo
6.
Am J Physiol Gastrointest Liver Physiol ; 316(2): G251-G262, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30520693

RESUMEN

Expression of the cytokine IL-11 is elevated in human Helicobacter pylori infection and progressively increases with worsening gastric pathology. Additionally, IL-11 is required for tumor development in STAT3-dependent murine models of gastric cancer (GC) and, when administered acutely, causes resolving atrophic gastritis. However, it is unclear whether locally elevated IL-11 ligand expression can, in isolation from oncogenic gp130-JAK-STAT pathway mutations, initiate GC pathogenesis. Here we developed a transgenic mouse model of stomach-specific (keratin 19 promoter) IL-11 ligand overexpression. Keratin 19 promoter-IL-11 transgenic ( K19-IL11Tg) mice showed specific IL-11 overexpression in gastric corpus and antrum but not elsewhere in the gastrointestinal tract or in other tissues. K19-IL11Tg mice developed spontaneous premalignant disease of the gastric epithelium, progressing from atrophic gastritis to TFF2-positive metaplasia and severe epithelial hyperplasia, including adenoma-like lesions in a subset of older (1 yr old) animals. Although locally advanced, the hyperplastic lesions remained noninvasive. H. pylori infection in K19-IL11Tg mice accelerated some aspects of the premalignant phenotype. Finally, K19-IL11Tg mice had splenomegaly in association with elevated serum IL-11, with spleens showing an expanded myeloid compartment. Our results provide direct in vivo functional evidence that stomach-specific overexpression of IL-11, in isolation from germline gp130-JAK-STAT3 genetic drivers, is sufficient for premalignant progression. These findings have important functional implications for human GC, in which frequent IL-11 overexpression occurs in the reported absence of somatic mutations in gp130 signaling components. NEW & NOTEWORTHY We provide direct in vivo functional evidence that stomach-specific overexpression of the cytokine IL-11, in isolation from gp130-JAK-STAT3 pathway mutations, can trigger spontaneous atrophic gastritis progressing to locally advanced epithelial hyperplasia (but not dysplasia or carcinoma), which does not require, but may be accelerated by, concomitant Helicobacter pylori infection.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Mucosa Gástrica/metabolismo , Hiperplasia/metabolismo , Interleucina-11/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Infecciones por Helicobacter/complicaciones , Hiperplasia/genética , Interleucina-11/genética , Ratones Transgénicos , Lesiones Precancerosas/metabolismo , Estómago/patología , Neoplasias Gástricas/metabolismo
7.
J Clin Invest ; 126(4): 1383-400, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26974160

RESUMEN

Chronic mucosal inflammation is associated with a greater risk of gastric cancer (GC) and, therefore, requires tight control by suppressive counter mechanisms. Gastrokine-2 (GKN2) belongs to a family of secreted proteins expressed within normal gastric mucosal cells. GKN2 expression is frequently lost during GC progression, suggesting an inhibitory role; however, a causal link remains unsubstantiated. Here, we developed Gkn2 knockout and transgenic overexpressing mice to investigate the functional impact of GKN2 loss in GC pathogenesis. In mouse models of GC, decreased GKN2 expression correlated with gastric pathology that paralleled human GC progression. At baseline, Gkn2 knockout mice exhibited defective gastric epithelial differentiation but not malignant progression. Conversely, Gkn2 knockout in the IL-11/STAT3-dependent gp130F/F GC model caused tumorigenesis of the proximal stomach. Additionally, gastric immunopathology was accelerated in Helicobacter pylori-infected Gkn2 knockout mice and was associated with augmented T helper cell type 1 (Th1) but not Th17 immunity. Heightened Th1 responses in Gkn2 knockout mice were linked to deregulated mucosal innate immunity and impaired myeloid-derived suppressor cell activation. Finally, transgenic overexpression of human gastrokines (GKNs) attenuated gastric tumor growth in gp130F/F mice. Together, these results reveal an antiinflammatory role for GKN2, provide in vivo evidence that links GKN2 loss to GC pathogenesis, and suggest GKN restoration as a strategy to restrain GC progression.


Asunto(s)
Proteínas Portadoras/metabolismo , Mucosa Gástrica/metabolismo , Proteínas de Neoplasias/metabolismo , Lesiones Precancerosas/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Proteínas Portadoras/genética , Mucosa Gástrica/patología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Helicobacter pylori , Humanos , Inmunidad Innata , Inmunidad Mucosa , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Células TH1/metabolismo , Células TH1/patología , Células Th17/metabolismo , Células Th17/patología
8.
Sci Rep ; 6: 20584, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26848037

RESUMEN

STAT3 regulates the expansion of myeloid-derived suppressor cells (MDSCs) during inflammation, infection and cancer. Hyperactivation of STAT3 in gp130(757F/F) mice is associated with protection from experimental colitis. This study determined mechanisms for this protection and compared this to mice with myeloid-specific STAT3-deficiency (LysMcre/STAT3(flox); gp130(757F/F) LysMcre/STAT3(flox)). Acute and chronic colitis was induced and colons were removed for histological, mRNA and protein analysis. Cell populations from spleen, mesenteric lymph node and colon were analyzed for different myeloid cell populations using flow cytometry. Functions of MDSCs and LPS-stimulated peritoneal macrophages were further characterized by in vitro and in vivo assays. Here we show that the resistance to experimental colitis in gp130(757F/F) mice is via myeloid-cell specific STAT3 activation, MDSC expansion and increased production of suppressive and protective cytokines.


Asunto(s)
Colitis/genética , Receptor gp130 de Citocinas/genética , Células Supresoras de Origen Mieloide/citología , Factor de Transcripción STAT3/genética , Animales , Colitis/etiología , Colitis/metabolismo , Colon/metabolismo , Colon/patología , Receptor gp130 de Citocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/efectos adversos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Factor de Transcripción STAT3/metabolismo , Bazo/metabolismo , Bazo/patología
9.
Cell Mol Gastroenterol Hepatol ; 2(1): 92-109, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28174705

RESUMEN

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is caused by failure of cells derived from the neural crest (NC) to colonize the distal bowel in early embryogenesis, resulting in absence of the enteric nervous system (ENS) and failure of intestinal transit postnatally. Treatment is by distal bowel resection, but neural cell replacement may be an alternative. We tested whether aneuronal (aganglionic) colon tissue from patients may be colonized by autologous ENS-derived cells. METHODS: Cells were obtained and cryopreserved from 31 HSCR patients from the proximal resection margin of colon, and ENS cells were isolated using flow cytometry for the NC marker p75 (nine patients). Aneuronal colon tissue was obtained from the distal resection margin (23 patients). ENS cells were assessed for NC markers immunohistologically and by quantitative reverse-transcription polymerase chain reaction, and mitosis was detected by ethynyl-2'-deoxyuridine labeling. The ability of human HSCR postnatal ENS-derived cells to colonize the embryonic intestine was demonstrated by organ coculture with avian embryo gut, and the ability of human postnatal HSCR aneuronal colon muscle to support ENS formation was tested by organ coculture with embryonic mouse ENS cells. Finally, the ability of HSCR patient ENS cells to colonize autologous aneuronal colon muscle tissue was assessed. RESULTS: ENS-derived p75-sorted cells from patients expressed multiple NC progenitor and differentiation markers and proliferated in culture under conditions simulating Wnt signaling. In organ culture, patient ENS cells migrated appropriately in aneural quail embryo gut, and mouse embryo ENS cells rapidly spread, differentiated, and extended axons in patient aneuronal colon muscle tissue. Postnatal ENS cells derived from HSCR patients colonized autologous aneuronal colon tissue in cocultures, proliferating and differentiating as neurons and glia. CONCLUSIONS: NC-lineage cells can be obtained from HSCR patient colon and can form ENS-like structures in aneuronal colonic muscle from the same patient.

10.
Gut ; 65(7): 1087-99, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26079943

RESUMEN

OBJECTIVES: The mucin MUC1, best known for providing an epithelial barrier, is an important protective host factor in both humans and mice during Helicobacter pylori pathogenesis. This study aimed to identify the long-term consequences of MUC1 deficiency on H. pylori pathogenesis and the mechanism by which MUC1 protects against H. pylori gastritis. DESIGN: Wildtype and Muc1(-/-) mice were infected for up to 9 months, and the gastric pathology, immunological response and epigenetic changes assessed. The effects of MUC1 on the inflammasome, a potent inflammatory pathway, were examined in macrophages and H. pylori-infected mice deficient in both MUC1 and inflammasome components. RESULTS: Muc1(-/-) mice began to die 6 months after challenge, indicating Muc1 deficiency made H. pylori a lethal infection. Surprisingly, chimaeric mouse infections revealed MUC1 expression by haematopoietic-derived immune cells limits H. pylori-induced gastritis. Gastritis in infected Muc1(-/-) mice was associated with elevated interleukin (IL)-1ß and epigenetic changes in their gastric mucosa similar to those in transgenic mice overexpressing gastric IL-1ß, implicating MUC1 regulation of an inflammasome. In support of this, infected Muc1(-/-)Casp1(-/-) mice did not develop severe gastritis. Further, MUC1 regulated Nlrp3 expression via an nuclear factor (NF)-κB-dependent pathway and reduced NF-κB pathway activation via inhibition of IRAK4 phosphorylation. The importance of this regulation was proven using Muc1(-/-)Nlrp3(-/-) mice, which did not develop severe gastritis. CONCLUSIONS: MUC1 is an important, previously unidentified negative regulator of the NLRP3 inflammasome. H. pylori activation of the NLRP3 inflammasome is normally tightly regulated by MUC1, and loss of this critical regulation results in the development of severe pathology.


Asunto(s)
Gastritis/microbiología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/patogenicidad , Inflamasomas/metabolismo , Mucina-1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Caspasa 1/genética , Metilación de ADN , Femenino , Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Gastritis/patología , Expresión Génica , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Mucina-1/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Transducción de Señal , Factores de Tiempo , Factor Trefoil-2/genética
11.
Oncoscience ; 2(10): 789-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26682246
12.
Cell Microbiol ; 17(11): 1570-82, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26332850

RESUMEN

STAT3 imparts a profound influence on both the epithelial and immune components of the gastric mucosa, and through regulation of key intracellular signal transduction events, is well placed to control inflammatory and oncogenic outcomes in the context of Helicobacter (H.) pylori infection. Here we review the roles of STAT3 in the host immune response to H. pylori infection, from both gastric mucosal and systemic perspectives, as well as alluding more specifically to STAT3-dependent mechanisms that might be exploited as drug targets.


Asunto(s)
Infecciones por Helicobacter/inmunología , Helicobacter pylori/inmunología , Inmunidad Innata , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
13.
Clin Sci (Lond) ; 129(8): 769-84, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26223841

RESUMEN

Cardiovascular disease continues to be the leading cause of global morbidity and mortality. Traditional risk factors account for only part of the attributable risk. The origins of atherosclerosis are in early life, a potential albeit largely unrecognized window of opportunity for early detection and treatment of subclinical cardiovascular disease. There are robust epidemiological data indicating that poor intrauterine growth and/or prematurity, and perinatal factors such as maternal hypercholesterolaemia, smoking, diabetes and obesity, are associated with adverse cardiovascular intermediate phenotypes in childhood and adulthood. Many of these early-life risk factors result in a heightened inflammatory state. Inflammation is a central mechanism in the development of atherosclerosis and cardiovascular disease, but few studies have investigated the role of overt perinatal infection and inflammation (chorioamnionitis) as a potential contributor to cardiovascular risk. Limited evidence from human and experimental models suggests an association between chorioamnionitis and cardiac and vascular dysfunction. Early life inflammatory events may be an important mechanism in the early development of cardiovascular risk and may provide insights into the associations between perinatal factors and adult cardiovascular disease. This review aims to summarise current data on the early life origins of atherosclerosis and cardiovascular disease, with particular focus on perinatal inflammation.


Asunto(s)
Aterosclerosis/etiología , Corioamnionitis , Enfermedades del Recién Nacido , Inflamación/complicaciones , Animales , Femenino , Humanos , Recién Nacido , Embarazo
14.
F1000Res ; 4: 113, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26064478

RESUMEN

The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca (2+) -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface.

15.
Am J Physiol Gastrointest Liver Physiol ; 308(1): G12-24, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25324506

RESUMEN

The trefoil factor TFF2 is a member of a tripartite family of small proteins that is produced by the stomach and the colon. Recombinant TFF2, when applied intrarectally in a rodent model of hapten colitis, hastens mucosal healing and reduces inflammatory indexes. Additionally, TFF2 is expressed in immune organs, supporting a potential immunomodulatory and reparative role in the bowel. In this study we confirm that TFF2 is expressed in the colon and is specifically enriched in epithelial cells relative to colonic leukocytes. TFF2-deficient, but not TFF1-deficient, mice exhibit a more severe response to acute or chronic dextran sulfate (DSS)-induced colitis that correlates with a 50% loss of expression of TFF3, the principal colonic trefoil. In addition, the response to acute colitis is associated with altered expression of IL-6 and IL-33, but not other inflammatory cytokines. While TFF2 can reduce macrophage responsiveness and block inflammatory cell recruitment to the colon, the major role in limiting the susceptibility to acute colitis appears to be maintenance of barrier function. Bone marrow transfer experiments demonstrate that leukocyte expression of TFF2 is not sufficient for prevention of colitis induction but, rather, that the gastrointestinal epithelium is the primary source of TFF2. Together, these findings illustrate that epithelial TFF2 is an important endogenous regulator of gut mucosal homeostasis that can modulate immune and epithelial compartments. Because of its extreme stability, even in the corrosive gut lumen, TFF2 is an attractive candidate as an oral therapeutic scaffold for future drug development in the treatment of inflammatory bowel disease.


Asunto(s)
Trasplante de Médula Ósea , Colitis/metabolismo , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran , Células Epiteliales/metabolismo , Mediadores de Inflamación/metabolismo , Mucinas/deficiencia , Proteínas Musculares/deficiencia , Péptidos/deficiencia , Pérdida de Peso , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/genética , Colitis/inmunología , Colitis/patología , Colitis/prevención & control , Colon/inmunología , Colon/patología , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/patología , Femenino , Interleucina-33 , Interleucina-6/metabolismo , Interleucinas/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mucinas/genética , Mucinas/metabolismo , Proteínas Musculares/genética , Péptidos/genética , Péptidos/metabolismo , Índice de Severidad de la Enfermedad , Factores de Tiempo , Factor Trefoil-1 , Factor Trefoil-2 , Factor Trefoil-3
16.
Oncotarget ; 6(2): 679-95, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25528766

RESUMEN

IL-1 is key driver of gastric tumorigenesis and is a downstream target of IL-11 signaling. Recently, IL-1 cytokines, particularly IL-1ß, have been flagged as therapeutic targets for gastric cancer treatment. Here, we assess the requirement for IL-1 signaling in gastric tumorigenesis. gp130757FF xIL-1RT1-/- mice were generated to determine the pathological consequence of ablated IL-1 signaling in the IL-11 dependent gp130757FF mouse model of gastric tumorigenesis. Gastric lesions in gp130757FF xIL-1RT1-/- mice were increased in incidence and size compared to gp130757FF mice. Proximal gastric lesions originated from the cardiac region and were associated with elevated STAT3 activation, loss of specialized gastric cells and a modulated immune response including increased expression of TNF-α and MDSC associated genes. Administration of IL-11 to IL-1RT1-/- mice showed similar changes to gp130757FF xIL-1RT1-/- mice. Spleens from IL-11 treated wildtype mice showed an enrichment of MDSC and gp130757FF xIL-1RT1-/- mice had increased MDSCs in the stomach compared to gp130757FF mice. Furthermore, crossing TNF-α-/- to gp130757FF mice resulted in reduced lesion size. We conclude that IL-1 signaling antagonizes IL-11/STAT3 mediated pathology and the genetic deletion of IL-1RT1 results in increased tumor burden. We provide evidence that a likely mechanism is due to IL-11/STAT3 dependent enrichment of MDSCs.


Asunto(s)
Neoplasias Cardíacas/metabolismo , Interleucina-11/antagonistas & inhibidores , Células Progenitoras Mieloides/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cardíacas/patología , Humanos , Interleucina-11/metabolismo , Ratones , Células Progenitoras Mieloides/patología , Transducción de Señal , Neoplasias Gástricas/patología
17.
Cell Mol Gastroenterol Hepatol ; 1(2): 203-221.e3, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28210674

RESUMEN

BACKGROUND & AIMS: Interleukin (IL)33 is a recently described alarmin that is highly expressed in the gastric mucosa and potently activates Th2 immunity. It may play a pivotal role during Helicobacter pylori infection. Here, we delineate the role of IL33 in the normal gastric mucosa and in response to gastropathy. METHODS: IL33 expression was evaluated in mice and human biopsy specimens infected with H pylori and in mice after dosing with aspirin. IL33 expression was localized in the gastric mucosa using immunofluorescence. Mice were given 1 or 7 daily doses of recombinant IL33 (1 µg/dose), and the stomach and the spleen responses were quantified morphologically, by flow cytometry and using quantitative reverse-transcription polymerase chain reaction and immunoblotting. RESULTS: In mice, the IL33 protein was localized to the nucleus of a subpopulation of surface mucus cells, and co-localized with the surface mucus cell markers Ulex Europaeus 1 (UEA1), and Mucin 5AC (Muc5AC). A small proportion of IL33-positive epithelial cells also were Ki-67 positive. IL33 and its receptor Interleukin 1 receptor-like 1 (ST2) were increased 4-fold after acute (1-day) H pylori infection, however, this increase was not apparent after 7 days and IL33 expression was reduced 2-fold after 2 months. Similarly, human biopsy specimens positive for H pylori had a reduced IL33 expression. Chronic IL33 treatment in mice caused systemic activation of innate lymphoid cell 2 and polarization of macrophages to the M2 phenotype. In the stomach, IL33-treated mice developed transmural inflammation and mucous metaplasia that was mediated by Th2/signal transducer and activator of transcription 3 signaling. Rag-1-/- mice, lacking mature lymphocytes, were protected from IL33-induced gastric pathology. CONCLUSIONS: IL33 is highly expressed in the gastric mucosa and promotes the activation of T helper 2-cytokine-expressing cells. The loss of IL33 expression after prolonged H pylori infection may be permissive for the T helper 1-biased immune response observed during H pylori infection and subsequent precancerous progression.

18.
Inflamm Bowel Dis ; 20(9): 1638-54, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24896241

RESUMEN

Most of what is known about the pathogenesis of inflammatory bowel disease (IBD) pertains to complex interplay between host genetics, immunity, and environmental factors. Epigenetic modifications play pivotal roles in intestinal immunity and mucosal homeostasis as well as mediating gene-environment interactions. In this article, we provide a historical account of epigenetic research either directly related or pertinent to the pathogenesis and management of IBD. We further collate emerging evidence supporting roles for epigenetic mechanisms in relevant aspects of IBD biology, including deregulated immunity, host-pathogen recognition and mucosal integrity. Finally, we highlight key epigenetic mechanisms that link chronic inflammation to specific IBD comorbidities, including colitis-associated cancer and discuss their potential utility as novel biomarkers or pharmacologic targets in IBD therapy.


Asunto(s)
Epigenómica , Inmunidad Innata/inmunología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Neoplasias/etiología , Animales , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones
19.
Am J Physiol Gastrointest Liver Physiol ; 304(2): G109-21, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23154977

RESUMEN

During the past decade, a new family of stomach-specific proteins has been recognized. Known as "gastrokines" (GKNs), these secreted proteins are products of gastric mucus-producing cell lineages. GKNs are highly conserved in physical structure, and emerging data point to convergent functions in the modulation of gastric mucosal homeostasis and inflammation. While GKNs are highly prevalent in the normal stomach, frequent loss of GKN expression in gastric cancers, coupled with established antiproliferative activity, suggests putative tumor suppressor roles. Conversely, ectopic expression of GKNs in reparative lesions of Crohn's disease alludes to additional activity in epithelial wound healing and/or repair. Modes of action remain unsolved, but the recent demonstration of a GKN2-trefoil factor 1 heterodimer implicates functional interplay with trefoil factors. This review aims to provide a historical account of GKN biology and encapsulate the rapidly accumulating evidence supporting roles in gastric epithelial homeostasis and tumor suppression.


Asunto(s)
Mucosa Gástrica/metabolismo , Hormonas Gastrointestinales/metabolismo , Lesiones Precancerosas/metabolismo , Transducción de Señal , Neoplasias Gástricas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Hormonas Gastrointestinales/química , Hormonas Gastrointestinales/genética , Homeostasis , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Estómago/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/prevención & control , Factor Trefoil-2 , Cicatrización de Heridas
20.
Expert Opin Ther Targets ; 16(9): 889-901, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22834702

RESUMEN

INTRODUCTION: STAT3 is a key transcription factor for many regulatory factors that modulate gene transcription. Particularly important are cytokines and growth factors that maintain homeostasis by regulating immunocytes, stromal and epithelial cells. Dysregulation of STAT3 by constitutive activation plays an important role in the initiation of inflammation and cellular transformation in numerous cancers, especially of epithelial origin. This review focuses on STAT3 drive in gastric cancer initiation and progression, with emphasis on its activation by cytokines, and how targeting the primary drivers or gastric STAT3 therapeutically may prevent or slow stomach cancer development. AREAS COVERED: This review will discuss the mechanics of STAT3 signalling, how constitutive STAT3 activation promotes gastric tumourigenesis in both human adenocarcinomas and mouse models, the nature of the upstream regulators of STAT3, and their association with chronic Helicobacter pylori infection, STAT3-activated genes that promote transformation and progression, and finally the development and use of STAT3 and upstream cytokine inhibitors as therapeutics. EXPERT OPINION: Chronic STAT3 activation is a key event in gastric cancer induction and progression. Specific targeting of stomach epithelial STAT3 or blocking IL-11Rα/gp130 and/or EGFR signal transduction in chronic gastric inflammation and metaplasia may be therapeutically effective in preventing gastric carcinogenesis.


Asunto(s)
Antineoplásicos/farmacología , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Factor de Transcripción STAT3/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Neoplasias Gástricas/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...